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Abstract—The status of motor function in stroke survivors and 
the effect of any therapeutic intervention are generally measured 
by physiotherapists using clinical assessment scales that probe 
specific aspects of a subject's motor behavior. Although they are 
widely accepted, these measurement tools are limited by 
interrater and intrarater reliability and are time-consuming to 
apply. This paper analyzes the changes in movement kinematics 
and kinetics during robot-aided neurorehabilitation of subjects 
after stroke and verifies the possibility of estimating outcome 
measures by means of a set of  robot measured parameters. 

Keywords-component; Outcome Measures, Robot therapy, 
Neurorehabilitation, Stroke. 

I. INTRODUCTION  
A recent systematic review literature has analyzed the 

effects of robot-assisted therapy on the recovery of upper limb 
after stroke, demonstrating its capability to improve short and 
long term motor control even if no consistent influence on 
functional abilities was observed [1-3]. In addition a 
multicenter study demonstrated that robot-assisted therapy 
improved outcomes over 36 weeks [4]. The status of motor 
function in stroke survivors and the effect of any therapeutic 
intervention are generally measured by physiotherapists, using 
clinical assessment scales that probe specific aspects of a 
subject's motor behavior [5-9]. They are standardized and 
validated but nevertheless, being administered by humans, they 
may lack in reliability. The measurement obtained is always 
subjective and depends on the ability of the rehabilitation 
professional. Robot devices have built-in technology to 
measure displacements, velocities, forces and quantify other 
derived parameters [10-12].  These measures have the benefit 
of being objective, reproducible and capturing different aspects 
of the motor improvement. Therefore, they may be successfully 
employed both for training and evaluation purposes. In 
particular, the sensors equipping rehabilitation robots allow an 
accurate measurement of movement kinematics (i.e. the 
trajectories of the limbs) and kinetics (the forces involved), 
which can be used to derive measures related to upper-
extremity movements. These objective measures can be 
computed automatically during therapy to provide information 
about a subject's motor impairment and functional ability. 
Therefore, they could be used to assess motor functions more 
frequently. 

Other works have tried to clarify how these robot-based 
kinematic and kinetic metrics relate to traditional human-
administered clinical scales for measuring outcome. In 
particular our research group introduced some models to 
describe the performance acquisition pattern during robot 
training (i.e. how these movement measures change with time). 
and demonstrated that the simultaneous assessment of 
kinematics and kinetics improvements during training could 
provide new insights into the mechanisms of recovery [10,11]. 
In addition, two other papers reported a strong to moderate 
correlation between normalized and non normalized  
movement quality measures obtained by the robots during 
training and standardized clinical scales [13,14]. This paper 
aims to analyze the changes in movement kinematics and 
kinetics during robot-aided neurorehabilitation of subjects after 
stroke and describes their relationship with the outcome 
measures. 

II. METHODS 
Eighteen patients after stroke (age=52± 13 yrs; 

gender=6F,12M;   paretic arm=10 left, 8 right) were included 
in this study performed at the Salvatore Maugeri Foundation, 
IRCCS Rehabilitation Institute of Veruno (Veruno, NO, Italy). 
All patients were in chronic stage, their unilateral 
cerebrovascular accident (CVA) having occurred at least 6 
months prior to enrolment (22 ± 20 months from CVA). 
Inclusion criteria were the presence of a single unilateral CVA 
and the presence of at least 10° of motion in the treated joints. 
Subjects with severe sensory and visual field impairment and 
aphasia were excluded. The study was carried out in 
conformity with the Declaration of Helsinki of the World 
Medical Association; all patients gave their informed consent 
to participate in the study, which was approved by the local 
scientific and ethics committees. Patients’ performance in  
kinetic parameters was compared with that of a group of 7 
healthy subjects (age: 41.7 ± 8.8 years). Patients were trained 
by means of the shoulder-elbow manipulator MEMOS 
(MEchatronic system for MOtor recovery after Stroke). a 
complete description of the system has been reported 
previously [11,12]. 
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A. Experimental procedure 
Patients were seated in a chair and had their trunk fastened 

to the back of the chair by a special jacket in order to limit 
compensation phenomena. The patient's paretic limb was 
supported at the elbow by a low friction pad that slid along the 
surface of the robot workspace. The starting and target points 
of reaching were presented on a computer monitor situated 
above the robot workspace. Patients had to make a sequence of 
point-to-point reaching movements in the horizontal plane; 
they were instructed to move the robot handle from the starting 
point to the end point following the straight line connecting 
them. Typical trajectories consisted of a square, or more 
complex geometrical figures including diagonal movements. 
Visual feedback of the current position of the handle was 
provided by means of a different coloured target. No assistance 
was provided during voluntary movements. If the patient could 
not complete the movement by means of voluntary activity, the 
robot evaluated the current position and guided the patient's 
arm to the target position. Patients received robot training twice 
a day, 5 days a week for at least three weeks. Each training 
session consisted of 4 cycles of exercise lasting 5 min. each 
followed by a 3 min. resting period. A practice session with 
detailed instructions was administered before training, in order 
to minimize the exercise learning effect. 

B. Clinical measures 
Patients’ abilities were assessed using the Fugl-Meyer scale 

(FM; range: 0-66) [15], and Motor Status Score (MSS; range: 
0-82) [16] at the start and end of treatment. In this study we 
used only the upper limb section of the FM scale. It is able to 
detect changes due to motor recovery in patients with severe to 
moderate motor impairment after stroke. The MSS was 
developed at the Burke Rehabilitation Hospital and is 
characterized by a greater sensitivity thanks to its 40-point 
score range for isolated shoulder and elbow movements 
specifying the quality of voluntary movement in the 
hemiparetic upper limb. 

C. Parameters measuring movement kinematic and kinetics 
In this study we used both kinematic and kinetic measures 

of upper limb movements, taken at the robot end-effector. 
Kinematic measures quantify the spatial and temporal quality 
of a subject's movement. Kinetic measures are usually used to 
quantify force, work, energy consumption and power 
associated with a subject's motor behaviour. The following 
parameters were considered: 

Movement smoothness. According to Rohrer et al. [17] 
movement smoothness can be evaluated by means of five 
parameters related in different ways to the movement speed of 
the manipulator during active movements. In our study the 
smoothness was obtained by computing the number of peaks in 
the tangential speed profile (local maxima found in the signal, 
low pass filtered at 3Hz) of each reaching movement. If a 
point-to-point reaching movement has a lower number of peaks 
in speed profile than in another movement this means that 
fewer acceleration and deceleration periods are present. The 
number of peaks is expressed as a negative value so that 
increases in the peak metric equal increases in smoothness. 

Movement speed. The robot device allowed to record the 
current position of the handle. In this way the mean value of 
the velocity (MV) of the handle  during the task execution 
could be computed. The mean speed may be considered a 
measure of smoothness; in fact several papers have shown that 
the movement during a motor task is the combination of a 
sequence of sub-movements with a bell-shaped velocity profile 
[18]. In addition it has been demonstrated that such 
components are clearly distinct at the beginning of treatment 
(jerky movements) so resulting in a low mean velocity value, 
and tend to merge in the course of treatment so producing a 
smoother movement and higher values of speed [17,19]. On the 
other hand, if a patient moves slowly, without a lot of variation 
in the speed profile, while another one starts and stops 
frequently, and attains the same mean velocity, the resulting 
smoothness values should be quite different. For this reason, 
given the many-faceted aspects represented by the mean 
velocity, we decided to consider this metric as a distinct 
component of motor recovery. 

Normalized force control parameter. The robot system we 
used includes a force transducer providing the patient's exerted 
force in the displacement direction. In particular it provides its 
components fx and fy in the orthogonal directions (front to 
back and lateral) of the two degree-of-freedom workspace. If 
we consider a graphic representation of the force components 
in a normal subject, when the motor task consists of four 
reaching movements corresponding to the four edges of a 
square, the picture obtained is similar to that obtained in 
figure1a. If we are interested only in how the subject is 

Figure 1.  Example of distribution pattern of the normalized force 
components in 7 normal subjects. (a=average pattern), and in two 
poststroke patients  at the start (b,c) and end (d,e) of treatment. 
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directing the force, the force values can be normalized by their 
respective maximum value, so obtaining a graph expressed in 
the ±1 range for each component. We can note that the pattern 
of distribution of the force values are approximately aligned 
along the two preferential directions of reaching. If we try to 
draw the same picture for a patient executing the same task 
(square tracing) at the start (figure1 b, c) and at the end (figure1 
d, e) of treatment, we observe that the distribution pattern of 
the force values at the start of training does not show 
preferential directions of distribution as conversely happens in 
the end-training picture. A force control parameter (nFCP) was 
obtained by computing the similarity of the distribution pattern 
obtained during a training session to the reference pattern, 
obtained by averaging the force distribution pattern of seven 
normal subjects executing the same reaching task as post-
stroke patients. In practice the comparison consisted in 
computing the difference between two images - the patient 
force distribution and the reference distribution obtained in the 
normal subjects group - and performing a double-integration of 
the obtained image-difference along its two dimensions. The 
parameter is expressed as a percentage of the whole image 
dimension. It can be considered as a parameter measuring the 
amount of error in the orientation of the exerted force during 
the task execution; therefore decreasing values during training 
reflect an improvement in force control during task execution. 

Force directional error. The Force Directional Error 
(FDE), defined by Lum [20,21], is the angle between the force 
vector recorded by the MIME robotics device and the unit 
vector aligned with the theoretical direction of movement. This 
angle is calculated at each sampling point and averaged across 
the trajectory. The 2 DoF robotic device we used constrained 
movement within the horizontal plane,  but let the patient free 
to move the robot handle in any direction of the workspace, 
creating a trajectory based on the applied force. For this reason 
in our case the angle considered was that formed between the 
vector aligned with the movement direction made by the 
patient and the vector aligned with the theoretical direction of 
movement (i.e. the line joining “start” and “end” positions of 
the reaching movement). Here, we considered as movements in 
the target direction only those in which the condition |θ| ≤ π/2 
was met. In order to obtain, the FDE value  over a whole 
training session, we computed the mean value from all 
reaching movements of the training session. 

Data analysis and statistics. The robot measured 
parameters were evaluated only during the active phase (i.e. 
without assistance) of movement. Student's t-tests for repeated 
measures were conducted to verify the statistical significance 
of change of movement kinematics, kinetics and of clinical 
variables in post-treatment with respect to pre-treatment values. 
In particular the pre and post treatment robot-measured  
parameters were obtained by averaging the values obtained 
during the first and last three training sessions. The time course 
of variables was assessed by the fitting of an exponential 
decaying law for the analysis in the whole group. The 
relationship between the clinical variables and the robot-
measured variables was assessed by backward stepwise 
regression analysis. Statistical analysis was performed using 
the StatView statistical package (SAS Inst., NC-USA). 

III. RESULTS 

A. Changes of movemen kinematics and kinetics during 
treatment  
The movement kinematics and kinetics of the robot-treated 

patients measured by means of the above reported parameters,  
improved during the course of treatment. Table 1 summarises 
the mean values ± standard deviations of PRE and POST 
treatment variables, their changes and the p value of the PRE 
vs. POST comparison. The parameters showed a statistically 
significant decrease in our group of chronic subjects after 
stroke. In particular 15 of the 18 patients decreased both nFCP 
and FDE, 3 increased the nFCP parameter and one increased 
both nFCP and FDE. Only 12 of these patients showed an 
improvement in the FM scale while 17 showed an 
improvement in MSS 

TABLE I.  PRE AND POST TREATMENT VALUES OF THE MOVEMENT 
KINEMATIC AND KINETIC MEASURES 

 PRE POST Change p 
VM (mm/s) 39.61±16.45 63.15±15.91 23.54±16.96 < 0.0001
SM (-nPK) -15.19±7.54 -6.43±5.78 8.76±6.82 < 0.0001
nFCP (a.u.) 30.23±6.23 22.26±6.15 -7.97±7.83  0.0001
FDE (deg) 30.61±9.48 21.43±5.77 -9.17±8.59  0.0005

 

B. Modeling time course of recovery 
The a) and b) panels of figures 2 show the time course of 

mean velocity (MV) and movement smoothness (SM), the two 
parameters describing the movement kinematics, during 32 
training sessions in the group of chronic patients treated with 
our robot device. Each point represents the average value 
obtained by the group for each training session. The vertical 
bars represent the standard error. It can be seen that the 
performance acquisition follows an increasing exponential law, 

Figure 2.  Values of the mean velocity, movement smoothness, nFCP and 
FDE over the course of 32 training sessions of therapy in the 
group of patients after stroke. Each point represents the average 
value obtained by the group for each training session. The vertical 
bars represent the standard error. The overlapped curve is the 
exponential decaying model fitting the parameter’s values 
obtained during the training.  
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so allowing the computation of the time constant related to the 
exponential improvement. The time constant was 7.7 sessions 
for MV and 3.2 sessions for SM. A plateau was reached 
towards the end of treatment for MV and after about 12 
training sessions of robot treatment for SM. The fitted model 
had a very high correlation with the data (r= 0.98 for MV ; 
r=0.87 for SM). 

The c) and d)  panels of figures 2  report the time course of 
nFCP and FDE. Also in this case,  the directional error of the 
patient exerted force decreased as treatment progressed and the 
average acquired performance followed a decreasing 
exponential law that allows the computation of the time 
constant related to the exponential decay. The time constant 
was 4.0 sessions for nFCP and 3.73 sessions for FDE. In both 
parameters the plateau was reached after about 15 training 
sessions corresponding to 1.5 weeks of robot treatment. The 
fitted model had a very high correlation with the data (r= 0.92 
for nFCP ; r=0.96 for FDE). 

C. Modeling clinical variables by robot-measured 
performance parameters 
The modeling of the relationship between the patient’s  

motor performance and the clinical scales was detailed in the 
second part of the study conducted on  the same group of 
patients after stroke.  

The model considered the pre and post treatment values of 
the MV, SM, nFCP and FDE motor performance parameters as 
independent variables, and the pre and post treatment values of 
FM scale  and MSS respectively as dependent variable.  

Table II summarises the mean values ± standard deviations 
of pre and post treatment clinical variables and the p value of 
the pre vs. post comparison. Findings show that our chronic 
patients reduced their impairment after treatment with the 
robot. Table III summarises the r, r2 and p values of the 
regression analysis carried out to model the relationship 
between the Fugl-Meyer scale and the Motor Status Score by 
the robot measured variables (pre and post treatment values). 

The models fitted by the stepwise regression including all 
the robot measured parameters were represented by the 
following formulas:  

FM= 41.419 - 0..687*nFCP  

MSS= 53.178 - 0.893*nFCP  

The MSS variable showed lower r values than those 
obtained for the Fugl-Meyer scale. Only the nFCP variable 
made a significant contribution to the model. 

A second model was fitted to assess the relationship 
between the changes obtained in the robot measured variables, 
the clinical variables at the start of treatment and the clinical 
outcome (i.e. the clinical variables at the end of treatment). In 
practice, the model considered the changes in MV, SM, nFCP 
and FDE and the FM or MSS values at the start of treatment as 
independent variables and the clinical scale values (FM or 
MSS) at the end of treatment as dependent variables. Table IV 

summarises the r, r2 and p values of the regression analysis 
carried out to model the relationship. 

The models fitted by the multiple regression were 
represented by the following formulas:  

FMPOST= 0.817 - + 1.131 *FMPRE 

MSSPOST= 1.856 + 1.093* MSSPRE 

The modeling results show very high correlation and r-
square values in both clinical scales. In particular the 
correlation was greater than 0.95, but the changes in robot 
measured parameters did not contribute to this model. 

TABLE II.  PRE AND POST TREATMENT CLINICAL VARIABLES 

 PRE 
(mean±sd) 

POST 
(mean±sd) p 

Motor Status Score 
(MSS, range:0-82) 27,53±12,44 31,94±14,07 <0.001 

Fugl-Meyer 
(MS, range:0-66) 21,44±8,58 25,06±10,04 <0.001 

 

TABLE III.  MODEL1: MULTIPLE REGRESSION RESULTS BETWEEN 
CLINICAL SCALES, AND ROBOT MEASURED VARIABLES (PRE AND POST 

TREATMENT VALUES) 

 Significant Independent Variables 
 nFCP 

Dependent Variables r r2 p 
FM 0.561 0.315 <0.001 
MSS 0.492 0.242 <0.03 

 

TABLE IV.  MODEL2: MULTIPLE REGRESSION RESULTS BETWEEN PRE-
TREATMENT CLINICAL SCALES, ROBOT PARAMETERS CHANGES (Δ=POST-PRE) 

AND POST-TREATMENT CLINICAL SCALES 

 Significant Independent Variables 
 FM(MSS)PRE

Dependent Variables r r2 p 
FM 0.967 0.935 < 0.0001 
MSS 0.966 0.933 < 0.0001 

 

IV. DISCUSSION AND CONCLUSIONS 
The results presented here confirm that the neural 

adaptation resulting from robotic training may improve both 
movement kinematics and kinetics. Assessment of the time 
course of recovery showed that nFCP, FDE and the movement 
smoothness improve quickly at first and then plateau, while 
steady gains in mean velocity occur over a longer time. The 
model developed to assess the relationship between the robot 
measured variables and the clinical scales showed a moderate 
correlation. This is in line with results obtained in our previous 
studies and could be due to the fact that the improvement in 
clinical scales is related to many other variables that may have 
no direct relationship with the improvement of movement 
dynamics acquired during planar tasks. However, the topic is 
of course relevant in that the objective is to provide researchers 
and therapists with a standardized and reliable tool to evaluate 
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patient outcomes with a set of objective, quantitative and 
highly repeatable  measurements. The second model estimating 
patient outcome based on the motor improvement measured by 
the robot and the clinical scale values at the start of treatment, 
showed  a strong correlation value. This is due solely to the 
strong relationship between pre and post treatment values 
without any significant contribution coming from the changes 
obtained in the robot measured parameters. Therefore it may be 
considered more useful to save resources (the time required for 
carrying out the second evaluation) in outcome estimation. The 
performance of regression models, relating robotic and clinical 
assessments, generally decreases when the models are tested on 
an independent data set for model validation [14]. Because of 
the limited number of subjects included in the study no 
validation of the fitted models has been provided in this study. 
Thus future extension of this work will include a validation 
procedure using an independent data set in order to 
demonstrate the real potential of these models. 
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